Extensions 1→N→G→Q→1 with N=C32 and Q=C22xA4

Direct product G=NxQ with N=C32 and Q=C22xA4
dρLabelID
A4xC62108A4xC6^2432,770

Semidirect products G=N:Q with N=C32 and Q=C22xA4
extensionφ:Q→Aut NdρLabelID
C32:(C22xA4) = C2xC62:C6φ: C22xA4/C23C6 ⊆ Aut C32186+C3^2:(C2^2xA4)432,542
C32:2(C22xA4) = S32xA4φ: C22xA4/A4C22 ⊆ Aut C322412+C3^2:2(C2^2xA4)432,749
C32:3(C22xA4) = C22xC32:A4φ: C22xA4/C24C3 ⊆ Aut C3236C3^2:3(C2^2xA4)432,550
C32:4(C22xA4) = S3xC6xA4φ: C22xA4/C2xA4C2 ⊆ Aut C32366C3^2:4(C2^2xA4)432,763
C32:5(C22xA4) = C2xA4xC3:S3φ: C22xA4/C2xA4C2 ⊆ Aut C3254C3^2:5(C2^2xA4)432,764

Non-split extensions G=N.Q with N=C32 and Q=C22xA4
extensionφ:Q→Aut NdρLabelID
C32.(C22xA4) = C22xC32.A4φ: C22xA4/C24C3 ⊆ Aut C3236C3^2.(C2^2xA4)432,549
C32.2(C22xA4) = C2xS3xC3.A4φ: C22xA4/C2xA4C2 ⊆ Aut C32366C3^2.2(C2^2xA4)432,541
C32.3(C22xA4) = C2xC6xC3.A4central extension (φ=1)108C3^2.3(C2^2xA4)432,548

׿
x
:
Z
F
o
wr
Q
<